Default configuration
Configurations are managed with hydra. Here, we show the default configuration at a glance.
Refer to source configurations files in folder configs for more information.
seed: 12345
work_dir: ${hydra:runtime.cwd}
debug: false
print_config: true
ignore_warnings: true
trainer:
_target_: pytorch_lightning.Trainer
min_epochs: 1
max_epochs: 20
log_every_n_steps: 1
accelerator: cpu
devices: 1
num_nodes: 1
num_sanity_val_steps: 2
accumulate_grad_batches: 4
precision: 16-mixed
datamodule:
transforms:
augmentations:
ClipAndComputeUsingPatchSize:
_target_: simlearner3d.processing.transforms.augmentations.ClipAndComputeUsingPatchSize
tile_height: 1024
patch_size: ${datamodule.patch_size}
normalizations:
StandardizeIntensityCenterOnZero:
_target_: simlearner3d.processing.transforms.transforms.StandardizeIntensityCenterOnZero
augmentations_list: '${oc.dict.values: datamodule.transforms.augmentations}'
normalizations_list: '${oc.dict.values: datamodule.transforms.normalizations}'
_target_: simlearner3d.processing.datamodule.hdf5.HDF5StereoDataModule
data_dir: null
split_csv_path: null
hdf5_file_path: ${hydra:runtime.cwd}/tests/Stereo/out.hdf5
images_pre_transform:
_target_: functools.partial
_args_:
- ${get_method:simlearner3d.processing.dataset.utils.read_images_and_create_full_data_obj}
tile_width: 1024
tile_height: 1024
patch_size: 768
sign_disp_multiplier: -1
masq_divider: 1
subtile_width: 50
subtile_overlap_train: 0
subtile_overlap_predict: 0
batch_size: 2
num_workers: 16
prefetch_factor: 1
callbacks:
log_code:
_target_: simlearner3d.callbacks.comet_callbacks.LogCode
code_dir: ${work_dir}/simlearner3d
log_logs_dir:
_target_: simlearner3d.callbacks.comet_callbacks.LogLogsPath
lr_monitor:
_target_: pytorch_lightning.callbacks.LearningRateMonitor
logging_interval: step
log_momentum: true
model_checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: val_loss
mode: min
save_top_k: 1
save_last: true
verbose: true
dirpath: checkpoints/
filename: epoch_{epoch:03d}
auto_insert_metric_name: false
early_stopping:
_target_: pytorch_lightning.callbacks.EarlyStopping
monitor: val_loss
mode: min
patience: 6
min_delta: 0
model:
optimizer:
_target_: functools.partial
_args_:
- ${get_method:torch.optim.Adam}
lr: ${model.lr}
lr_scheduler:
_target_: functools.partial
_args_:
- ${get_method:torch.optim.lr_scheduler.ReduceLROnPlateau}
mode: min
factor: 0.5
patience: 20
cooldown: 5
verbose: true
criterion:
_target_: simlearner3d.models.criterion.masked_triplet_loss.MaskedTripletLoss
margin: 0.3
_target_: simlearner3d.models.generic_model.Model
ckpt_path: null
neural_net_class_name: MSNet
neural_net_hparams:
Inplanes: 32
momentum: 0.9
monitor: val_loss
false1: 1
false2: 4
learning_rate: 0.001
lr: 0.003933709606504788
mode: feature
logger:
comet:
_target_: pytorch_lightning.loggers.comet.CometLogger
save_dir: .
workspace: ${oc.env:COMET_WORKSPACE}
project_name: ${oc.env:COMET_PROJECT_NAME}
experiment_name: ''
auto_log_co2: false
disabled: false
task:
task_name: fit
auto_lr_find: false